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Abstract

Smooth Fano polytopes (SFPs) play an important role in toric geometry and combina-
torics. In this paper, we introduce a specific subcollection of them, i.e., the unimodular
smooth Fano polytopes (USFPs). In Section 2, they are verified to satisfy the three (weak,
strong, star) Ewald conditions. Besides, a characterisation of USFPs is provided as a corol-
lary of the famous Seymour’s decomposition theorem. After that, we introduce the previous
result by L. Crespo, A. Pelayo and F. Santos, and give a proof of the claim that any deeply
monotone polytope is in fact the dual polytope of some USFP. In other words, we extend
their results on deeply monotone polytopes to the case of USFPs.

1 Introduction

Smooth Fano polytopes have been intensively studied for several decades. Their unimodular
equivalence classes are convex geometric objects corresponding to the ones of smooth toric Fano
varieties. Thus, it allows one to pose, consider, and solve problems about them from both com-
binatorial and algebraic view points. The dual concept of smooth Fano polytopes is known as
monotone (moment) polytopes, which correspond to monotone symplectic manifolds. For more
details on them on symplectic geometry, we refer to the book by Cannas da Silva [4]. In addition,
they also have an emphasis on classical mechanics. See, e.g., [1]. Up to unimodular equivalence,
smooth Fano polytopes and monotone polytopes share the same amount for any fixed dimension.
Currently, they have been completely classified until dimension 9 [7], [11]. However, it is hard to
proceed the process in higher dimension since the number increases rapidly. Meanwhile, people
are also interested in searching for possible bounds on invariants. For example, Casagrande
showed that the maximal number of vertices of a smooth Fano n-polytope is 3n [3]. Besides,
there are also bounds on volume and lattce points. An interesting example without smoothness
can be found in [10], Theorem B and C. For the smooth case, an attractive open question is
the Ewald conjecture [5], which claims a volumn bound for any smooth Fano n-polytope. The
most recent partial result of this conjecture is given by Crespo, Pelayo and Santos [2].
For approaching Ewald conjecture, we are motivated to generalize his result to a larger subcol-
lection of smooth Fano polytopes. So, an important goal of this paper is to show that the set of
so-called unimodular smooth Fano polytopes is such an extension.

1.1 Smooth Fano Polytopes and Monotone Polytopes

Definition 1. Let P ⊂ NR(∼= Rn) be an n-dimensional lattice polytope, then it is said to
be

∗E-mail:u244520i@ecs.osaka.u-ac.jp
arXiv:2409.14678



(1) projective if it contains the origin as its interior;

(2) Fano if it’s projective and any of its vertices is a primitive lattice point;

(3) reflexive if its dual polytope is still a lattice polytope. The dual polytope P ∗ consists of
x ∈ Rn s.t. ⟨x, y⟩ ≥ −1 for all y ∈ P , where ⟨x, y⟩ is the standard inner product of Rn.

Nowadays, the two ‘dual’ definitions of smooth lattice polytopes are both commonly used by
mathematicians. One starts with the polyhedral cone, whose apex is the origin, over a facet of
the polytope, e.g., [11]. The other regards the corner at a fixed vertex of the polytope as a cone,
e.g. [2],[8]. Let N ∼= Zn be a lattice with associated real vector space NR

∼= N ⊗Z R and let M
be the dual lattice of N with associated real vector spaces MR

∼= M ⊗Z R. Then we have the
two definitions as follows:

Definition 2. Let P ⊂ NR(∼= Rn) be an n-dimensional lattice polytope, then it is said to
be

(4a) simplicial if there are precisely n vertices for each facet;

(5a) smooth if it is simplicial and the vertices of any facet of P form a basis of the lattice N .

Definition 3. Let Q ⊂ MR(∼= Rn) be an n-dimensional lattice polytope, then it is said to
be

(4b) simple if there are precisely n edges meeting at each fixed vertex;

(5b) smooth if it is simple and the primitive edge-direction vectors at each vertex form a basis
of the lattice M .

When talking about smooth Fano polytope, we always mean the polytope in NR, i.e., Definition
2. Besides, the smooth reflexive polytope in MR with Definition 3 is also called a monotone
polytope (or reflexive Delzant polytope), whose name arises from the research of sympletic toric
geometry. In most cases where the definition is clear, we simply use Rn as our vector space for
polytopes.

Unimodular equivalence
Let P and P ′ be two lattice polytopes in Rn, then we say that P and P ′ are unimodularly

equivalent if there exists a unimodular transformation which maps P to P ′. Here, a unimodular
transformation is a linear map whose representative matrix is an integer matrix and has the
determinant ±1. All the polytoeps in this paper, if nothing more is mentioned, are up to
unimodular equivalence.

Example 1. There are precisely 5 smooth Fano polytopes in dimension 2 up to unimodular
equivalence. They are shown in Figure 1 together with their dual polytopes.

1.2 Ewald Conjectures and Ewald Conditions

In the research of smooth Fano polytopes, there is a long-standing open question raised by Gü
nter Ewald in 1988 [5]. He conjectured that any n-dimensional smooth Fano polytope can be
embedded into [−1, 1]n. After that, Mikkel Øbro [11] mentioned a stronger version of Ewald
conjecture and gave a positive answer to the case up to dimension 7. Since it’s hard to prove
these Ewald conjectures directly, a natural idea is to find a possible collection of polytopes with
more restrictions such that they satisfy the condition of these conjectures, and then ‘expand’ it
to the original conjectures. In other words, we are trying to find the maximal subset of smooth



Figure 1: 2-dimensional smooth Fano polytopes and their duals

Fano polytopes that is true for the so-called weak and strong ‘Ewald conditions’. Moreover,
Dusa McDuff introduced another Ewald condition called star Ewald, inspired by problems in
toric symplectic geometry [8]. The concrete expression of these conditions are listed below.

Definition 4. Let P be an n-dimensional projective polytope, then we say that

• it satisfies the weak Ewald condition if P can be embedded into the hypercube [−1, 1]n via
a unimodular transformation;

• equivalently, it satisfies the weak Ewald condition if the symmetric point set E(P ∗) of its
dual polytope P ∗ contains a unimodular basis of Zn, where the symmetric point set is
defined to be

E(P ∗) := P ∗ ∩ (−P ∗) ∩ Zn;

• it satisfies the strong Ewald condition if for any vertex v ∈ P , there exists a unimodular
transformation ϕ, s.t. ϕ(P ) ⊂ [−1, 1]n and ϕ(v) =

∑n
i=1 ei, where ei are standard basis

vectors of Rn;

• equivalently, it satisfies the strong Ewald condition if for any facet F of its dual polytope
P ∗, the set E(P ∗) ∩ F contains a unimodular basis of Zn;

• P ∗ satisfies the star Ewald condition if every face of P ∗ satisfies the star Ewald condition.
A face f of P ∗ is said to be star Ewald if there exists a symmetric point λ ∈ E(P ∗) s.t.
λ ∈ Star∗(f) and −λ /∈ Star(f). Here, Star(f) is the union of all facets (face of codimension
1) containing face f , and star(f) is the union of all ridges (face of codimension 2) containing
face f . Besides, Star∗(f) := Star(f)\star(f).

Furthermore, Benjamin Nill generalized the weak Ewald conjecture in 2009 to the case where
reflexivity of the dual polytope is not required [9]:

Conjecture 1 (Generalized Ewald conjecture [9]). Let P ⊂ NR be an n-dimensional poly-
tope whose dual polytope P ∗ is a smooth projective lattice polytope in MR, then P lies in the
hypercube [−1, 1]n.

A recent result in dimension 2 and some partial results in dimension 3 have been verified
by Luis Crespo [2]. Though it seems more general without the requirement of reflexivity, Nill’s
conjecture is believed to be implied by the weak Ewald conjecture [2].



2 Main Results

Definition 5. Let P ⊂ Rn be a lattice polytope, then the (coordinate) matrix of P is an
m×n-matrix (m > n) whose each row is the coordinates of a vertex. The polytope P is said to
be unimodular if any n vertices form either a basis of the lattice or are linearly dependent. In
other words, any n× n-submatrix has determinant ±1 or 0.

There are three main theorems in this paper:

Theorem 2.1. Let P be an n-dimensional unimodular smooth Fano polytope with m vertices,
then

(i) P satisfies the strong Ewald condition, and

(ii) the dual polytope P ∗ of P satisfies the star Ewald condition.

Theorem 2.2. Let P be a unimodular smooth Fano polytope. Then its coordinate matrix
M can be constructed from graphic matrices by elementary operations, (matroid-) dualizing and
k-sums for k = 1, 2, 3.

Remark 1. This result can be seen as a corollary of the famous Seymour’s decomposition
theorem on matroids [13]. In addition, for any given graphic matrices, one may construct a
lattice polytope on it. If the polytope is smooth Fano, then we call it a smooth Fano polytope
arising from directed graph (SFPdG for short, and details can be found in [6]). Obviously, each
SFPdG is a USFP.

Definition 6. An n-dimensional monotone polytope P is said to be deeply (smooth) if the
paralledpiped at any vertex v of P , i.e.,

{v +
n∑

i=1

λiui| λi ∈ [0, 1], ∀i}

is contained in P .

Theorem 2.3. Any deeply monotone polytope is the dual polytope of a unimodular smooth
Fano polytope.

Remark 2. With the results above, we have the following relations:

{Deeply monotone polytopes} ⊂ {Duals of USFPs}
∩ ∪

{UT-free monotone polytopes} {Duals of SFPdGs}

Here, a UT-free monotone polytope is a monotone polytope without any unimodular triangle as
a 2-face [2].

Now, we know that USFPs satisfy three Ewald conditions by Theorem 2.1, and then, DMP
and SFPdG follow from the inclusions. Naturally, one may conjecture:

Conjecture 2. UT-free monotone polytopes are the duals of USFPs (up to unimodular
equivalence). In particular, all the UT-free monotone polytopes satisfy the three Ewald condi-
tions.

Remark 3. Furthermore, we can replace the ‘USFPs’ in Conjecture 2 by the ‘SFPdGs’, i.e.,

{UT-free monotone polytopes} ⊂ {Duals of SFPdGs}.

which is still very likely to be true.

Remark 4. The numbers of these types of polytopes, up to dimension 6 are listed below:



Dimension SFPs UT-free DMPs SFPdGs USFPs

2 5 5 5 5 5

3 18 16 16 16 16

4 124 74 72 95 96

5 866 336 300 551 554

6 7622 1699 1352 ≥ 3920 4097
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